PG Diploma In Data Science - ONLINE
Course Description
PG Diploma In Data Science - ONLINE
What you'll learn in this course?
This course offers a comprehensive introduction to data science, combining statistical analysis, programming, and machine learning techniques. Participants will learn to collect, clean, and analyze data to uncover insights and drive decision-making. Key topics include Python, data visualization, predictive modeling, anddata visualization, predictive modeling,and data visualization tool like power BI. Designed for beginners and professionals, the course emphasizes hands-on projects and real-world applications. Build the skills to succeed in this high-demand field.
Course Curriculum
Dorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua Quis ipsum suspendisse ultrices gravida. Risus commodo viverra maecenas accumsan.
-
python introduction ,
python comments ,
python variables ,
python booleans ,
python list ,
python tuple ,
python sets ,
python Dictionaries ,
python conditional statements ,
python primitive loops ,
python functions ,
python lambda ,
python class and objects ,
PYTHON MODULES ,
python inheritance ,
python polymorphism ,
python Abstraction ,
python encapsulation ,
python pip ,
python try except ,
python file handling ,
python basic programes ,
numpy introduction ,
numpy creating arrays ,
numpy array indexing ,
numpy array slicing ,
numpy copy and view ,
numpy array shape ,
numpy array reshape ,
numpy array iterating ,
numpy array join ,
numpy array split ,
numpy array search ,
numpy array sort ,
numpy array filter ,
pandas introduction ,
pandas series ,
pandas Dataframe ,
Pandas read csv ,
pandas analyzing data ,
cleaning empty cells ,
cleaning wrong format ,
cleaning wrong data ,
removing duplicates ,
matplotlib introduction ,
matplotlib pyplot ,
matplotlib plotting ,
matplotlib markers ,
matplotlib line ,
matplotlib labels ,
matplotlib grid ,
matplotlib subplot ,
matplotlib scatter ,
matplotlib bars ,
matplotlib piecharts ,
-
intoduction to statistics ,
Descriptive vs inferential statistics ,
Measures of central tendency: mean, median, mode ,
Measures of dispersion: variance, standard deviation
Probability basics ,
propability Distributions ,
Correlation and covariance ,
Central limit theorem ,
-
mysql introduction ,
RDBMS ,
SQL ,
CREATE DATABASE ,
CREATE TABLE ,
MYSQL SELECT ,
MYSQL WHERE ,
MYSQL AND OR NOT ,
MYSQL ORDER BY ,
MYSQL INSERT INTO ,
MYSQL NULL VALUES ,
MYSQL UPDATE ,
MYSQL DELETE ,
MYSQL LIMIT ,
MYSQL MIN AND MAX ,
MYSQL AVG COUNT SUM ,
MYSQL LIKE ,
MYSQL IN ,BETWEEN ,
MYSQL ALTER ,
MYSQL DROP TABLE ,
MYSQL DATABASE ,
-
machine learning introduction ,
PREPROCESSING ,
SUPERVISED LEARNING ,
UNSUPERVISED LEARNING ,
SEMI -SUPERVISED LEARNING ,
REINFORCEMENT LEARNING ,
CLASSIFICATION AND REGRESSION ,
CLUSTERING AND ASSOCIATION ,
LINEAR REGRESSION ,
LOGISTIC REGRESSION ,
DECISION TREE ,
OVERFITTING AND UNDERFITTING ,
ENSEMBLE METHOD ,
RANDOM FOREST ,
SUPERVECTOR MACHINE ,
K-NEAREST NEIGHBOUR ,
MODEL EVALUATION(PRECISION,RECALL,F1SCORE) ,
cross validation ,
bias-variance-tradeoff ,
hyperparameter tuning ,
PCA ,
-
introduction to nlp ,
python libraries for nlp ,
Text preprocessing ,
speech recognition ,
advanced nlp(deep learning) ,
what is neural network(FORWARD AND BACKWARD PROPAGATION) ,
RECURRENT NEURAL NETWORK(RNN) ,
CONVOLUTIONAL NEURAL NETWORK(CNN) ,
Speech Recognition Hands-on Experience ,
-
introduction to powerbi ,
data visualization ,
power query editor ,
DAX ,
